

Test Location In	formation				
Name	China Academy of Information and Telecommunication Technology				
Address	CuiHu Cloud Center, No. 1 Gaolizhang Road, Wenquan Town, Haidian District, Beijing				
Client Information	on				
Name	NAVITAS GREEN SOLUTIONS PVT. LTD				
Address	B-20/3, Road No: 14, Hojiwala Industrial Estate Sachin Udyognagar Sahkari Mandli Limited Sachin Palsana Road Surat, Gujarat, 394230 India.				
Report Informati	ion				
Report Number	4788939006				
Report Date	2020-02-15				
Standard References	IEC 62716 first edition: 2013-06 Photovoltaic (PV) modules – Ammonia corrosion testing, IEC61215 second edition:2005 -04 Crystalline silicon terrestrial photovoltaic (PV) modules – Design qualification and type approval IEC61730-2 first edition:2004-10 Photovoltaic (PV) module safety qualification – Part 2: Requirements for testing				
Test Product Inf	ormation				
Туре	NSM380				
Product	Mono-crystalline photovoltaic module				
Testing Enginee	r				
Name/Signature	Wu Yapan (from subcontract lab)				
Laboratory Revi	ew				
Name/Signature	Johnny Zhu				

General Information

Information conveyed by this Report applies only to the test sample(s) actually tested. UL Company did not select the sample(s), determine whether the sample(s) was representative of production sample(s), nor was UL provided with information relative to the formulation or identification of component materials used in the test sample(s).

UL Company has not established a factory Follow-Up Service Program to determine the conformance of subsequently produced products, nor has any provision been made to apply any registered mark of UL to such product(s). The issuance of this Report in no way implies any Listing, Classification or Recognition by UL Company and does not authorize use of UL's marks, or other reference to UL, on the product or system. UL's name and marks cannot be used in any packaging, advertising, promotion or marketing relating to the product and data in this Report, without UL Company's prior written permission.

UL Company's services are provided independently of UL's Conformity Assessment services such as preliminary product investigations, product certification, or field evaluation services. UL Company does not provide specific product design solutions, including prescriptive revisions to existing or prospective product designs. UL Company does not guarantee, warranty or provide an assurance (express or implied) that a positive test result, compliance report, or issuance of a UL certification mark will result from the testing performed or the information contained in this Report.

In no event shall UL be responsible to anyone for whatever use or non-use is made of the information contained in this Report and in no event shall UL Company, its employees, or its agents incur any obligation or liability for damages including, but not limited to, consequential damage arising out of or in connection with the use or inability to use the information contained in this Report.

"UL Company" means a UL Contracting Party or an entity controlled by, controlling, or under common control with a UL Contracting Party. "Control" means the possession, directly or indirectly, of the power to direct or cause the direction of the management and policies of an entity, whether through ownership of more than 50% of the interests in such entity, by contract, or otherwise. The UL Company identified or referred to in a quotation or project confirmation or service agreement shall be referred to as "UL Contracting Party".

Summary of test results	Page
Preconditioning	7
Visual inspection as received	9
Maximum power determination as received	11
Dielectric voltage withstand test as received	13
Wet leakage current test as received	16
Ground continuity test as received	19
Ammonia resistance test procedure	22
Visual inspection after Ammonia resistance test procedure	24
Maximum power determination after Ammonia resistance test procedure	26
Dielectric voltage withstand test after Ammonia resistance test procedure	28
Wet leakage current test after Ammonia resistance test procedure	31
Ground continuity test after Ammonia resistance test procedure	34
Bypass diode functionality test	37

Table 1 "List of tests"

Appendix	Page
Appendix 1 – Statement of the estimated uncertainty	42
Appendix 2 – PV module Family Bill of Material	43
Appendix 3 – Instrument reference list	44
Appendix 4 – Label and module picture	45

Table 2 "Appendix"

Sample Ident	ification				
Sample No.	Sample Identification Number	Date Received	Product Description /Serial Number		
1	2733660	2019-12-04	PV module		
I		2019-12-04	NS380071900004		
2	0 0722050 0040 40 04		2733659 2019-12-04	2010 12 01	PV module
2	2733039	2019-12-04	NS380071900010		
2	0 0700050		PV module		
3	2733658	2019-12-04	NS380071900014		
	Table 2 "Sample identification list"				

 Table 3 "Sample identification list"

Module Type	Voc	Vmp	MSV	Imp	lsc	Pmax	Fill Factor
	(V)	(V)	(V)	(A)	(A)	(Wp)	(%)
	Μ	odule Se	ries NSMx	xx (x=32	0~380)	•	•
NSM380	48.60	39.8	1500	9.55	9.88	380	79.14
NSM375	48.40	39.6	1500	9.47	9.83	375	78.82
NSM370	48.20	39.4	1500	9.39	9.78	370	78.49
NSM365	48.00	39.2	1500	9.31	9.73	365	78.15
NSM360	47.80	39	1500	9.23	9.68	360	77.80
NSM355	47.60	38.8	1500	9.15	9.63	355	77.45
NSM350	47.40	38.6	1500	9.07	9.58	350	77.08
NSM345	47.20	38.4	1500	8.98	9.53	345	76.70
NSM340	47.00	38.2	1500	8.90	9.48	340	76.31
NSM335	46.80	38	1500	8.82	9.43	335	75.91
NSM330	46.60	37.8	1500	8.73	9.38	330	75.50
NSM325	46.40	37.6	1500	8.64	9.33	325	75.07
NSM320	46.20	37.4	1500	8.56	9.28	320	74.64
	Mo	dule Serie	es NSMxx	x-60 (x=2	50~330)	·	•
Module Type	Voc	Vmp	MSV	Imp	lsc	Pmax	Fill Factor
	(V)	(V)	(V)	(A)	(A)	(Wp)	(%)
NSM330-60	41.10	33.7	1500	9.79	10.19	330	78.79
NSM325-60	40.90	33.5	1500	9.70	10.01	325	79.38
NSM320-60	40.70	33.3	1500	9.61	9.92	320	79.26
NSM315-60	40.50	33.1	1500	9.52	9.83	315	79.12
NSM310-60	40.30	32.9	1500	9.42	9.74	310	78.98
NSM305-60	40.10	32.7	1500	9.33	9.65	305	78.82
NSM300-60	39.90	32.5	1500	9.23	9.56	300	78.65
NSM295-60	39.70	32.3	1500	9.13	9.47	295	78.47
NSM290-60	39.50	32.1	1500	9.03	9.38	290	78.27
NSM285-60	39.30	31.9	1500	8.93	9.29	285	78.06

Report No:	4788939006
Report Date:	2020-02-15

NSM220-48	31.20	25.3	1500	8.70	9.11	220	77.40
NSM225-48	31.40	25.5	1500	8.82	9.22	225	77.72
NSM230-48	31.60	25.7	1500	8.95	9.33	230	78.01
NSM235-48	31.80	25.9	1500	9.07	9.44	235	78.28
NSM240-48	32.00	26.1	1500	9.20	9.55	240	78.53
NSM245-48	32.20	26.3	1500	9.32	9.66	245	78.76
NSM250-48	32.00	26.5	1500	9.43	9.77	250	78.98
NSM255-48	32.60	26.7	1500	9.55	9.88	255	79.33
NSM260-48	32.80	26.9	1500	9.67	9.99	260	79.35
NSM265-48	33.00	27.1	1500	9.78	10.1	265	79.51
module i ype	(V)	(V)	(V)	(A)	(A)	(Wp)	(%)
Module Type	Voc	Vmp	MSV	Imp	lsc	Pmax	Fill Facto
100101210-04	33.75		s NSMxxx			215	75.39
NSM220-54 NSM215-54	33.95	27.3	1500 1500	8.06 7.93	8.55 8.45	220	75.79
	34.15	27.5 27.3		8.18	8.65		76.17
NSM230-54 NSM225-54		27.7	1500			230	
NSM235-54	34.55 34.35	27.9	1500	8.30	8.85 8.75	235	76.86 76.52
NSM240-54 NSM235-54	34.75	28.1	1500 1500	8.54 8.42	8.95	240 235	77.17
	34.95	28.3		8.66	9.05		77.46
NSM250-54 NSM245-54			1500			250	
NSM250-54	35.35	28.5	1500	8.77	9.25	255	77.73
NSM255-54	35.35	28.7	1500	9.00 8.89	9.35	255	77.98
NSM260-54	35.55	29.1	1500	9.00	9.45	260	78.22
NSM265-54	35.75	29.3	1500	9.22	9.35	265	78.44
NSM270-54	35.95	29.3	1500	9.32	9.55	275	78.64
NSM275-54	36.15	29.7	1500	9.43	9.65	275	79.00
NSM280-54	36.35	29.9	1500	9.33	9.85	280	79.00
NSM290-54 NSM285-54	36.75	29.9	1500	9.63	9.95	290	79.31
NSM295-54	36.95	30.3	1500	9.74	9.95	295	79.44
NSM295-54	36.95	30.3	1500	(A) 9.74	10.05	295	79.44
module Type	(V)	(V)	(V)	(A)	(A)	(Wp)	(%)
Module Type	Voc	Vmp	es NSMxxx MSV	lmp	lsc	Pmax	Fill Facto
NSM250-60	37.90	30.5	1500	8.20	8.66	250	76.17
NSM255-60	38.10	30.7	1500	8.31	8.75	255	76.49
NSM260-60	38.30	30.9	1500	8.41	8.84	260	76.79
NSM265-60	38.50	31.1	1500	8.52	8.93	265	77.08
NSM270-60	38.70	31.3	1500	8.63	9.02	270	77.35
NSM275-60	38.90	31.5	1500	8.73	9.11	275	77.60
NSM280-60	39.10	31.7	1500	8.83	9.2	280	77.84

NSM215-48	31.00	25.1	1500	8.57	9.00	215	77.06
NSM210-48	30.80	24.9	1500	8.43	8.89	210	76.69
NSM205-48	30.60	24.7	1500	8.30	8.78	205	76.30
NSM200-48	30.40	24.5	1500	8.16	8.67	200	75.88
NSM195-48	30.20	24.3	1500	8.02	8.56	195	75.43
NSM190-48	30.00	24.1	1500	7.88	8.45	190	74.95
NSM185-48	29.80	23.9	1500	7.74	8.34	185	74.44
NSM180-48	29.60	23.7	1500	7.59	8.23	180	73.89
	Мо	dule Serie	s NSMxx)	-36 (x=1	50~185)		
Module Type	Voc	Vmp	MSV	Imp	lsc	Pmax	Fill Factor
	(V)	(V)	(V)	(A)	(A)	(Wp)	(%)
NSM185-36	24.15	19.72	1000	9.38	9.80	185	78.17
NSM180-36	23.95	19.52	1000	9.22	9.68	180	77.64
NSM175-36	23.75	19.32	1000	9.06	9.56	175	77.08
NSM170-36	23.55	19.12	1000	8.89	9.44	170	76.47
NSM165-36	23.35	18.92	1000	8.72	9.32	165	75.82
NSM160-36	23.76	19.80	1000	8.08	8.74	160	77.05
NSM155-36	23.40	19.44	1000	7.97	8.61	155	76.93
NSM150-36	23.04	19.08	1000	7.86	8.48	150	76.77
	Мо	dule Serie	s NSMxxx	-66 (x=29	95~355)		•
Module Type	Voc	Vmp	MSV	Imp	lsc	Pmax	Fill Factor
	(V)	(V)	(V)	(A)	(A)	(Wp)	(%)
NSM355-66	44.75	36.6	1500	9.70	9.97	355	79.56
NSM350-66	44.55	36.4	1500	9.62	9.92	350	79.20
NSM345-66	44.35	36.2	1500	9.53	9.87	345	78.81
NSM340-66	44.15	36.0	1500	9.44	9.82	340	78.42
NSM335-66	43.95	35.8	1500	9.36	9.77	335	78.02
NSM330-66	43.75	35.6	1500	9.27	9.72	330	77.60
NSM325-66	43.55	35.4	1500	9.18	9.67	325	77.17
NSM320-66	43.35	35.2	1500	9.09	9.62	320	76.73
NSM315-66	43.15	35.0	1500	9.00	9.57	315	76.28
	40.05	34.8	1500	8.91	9.52	310	75.82
NSM310-66	42.95	54.0				1	1
NSM310-66 NSM305-66	42.95	34.6	1500	8.82	9.47	305	75.34
				8.82 8.72	9.47 9.42	305 300	75.34 74.85

 Table 4 Models Covered: Mono-PERC Solar Module

UL

NSRT v5.01

Report No:4788939006Report Date:2020-02-15

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
_	_	_	2019-12-31

Preconditioning

Description and Setup

The module was exposed to a total irradiance of 5 - 20kWh/m².

Results			
Sample No.	Average irradiance during exposed time [W/m ²]	Exposed time [hh:mm]	Total exposed irradiance [kWh/m²]
2733660 2733659 2733658	854	6.0	5.1

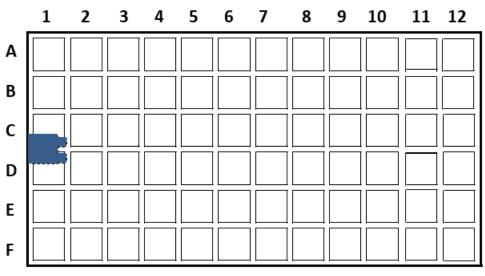
Table 5 "Preconditioning"

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
27.7	-	24.8	2019-12-31

Visual Inspection As Received

Description and Setup

Samples were visually inspected according to IEC61215 2nd edition rev. date 2005-04.


To detect visual defects prior testing. The test was performed with an illumination of not less than 1000 lux. The modules were inspected for the following conditions (if applicable) primarily, additionally all other observations on the modules were noted.

- cracked, bent, misaligned or torn external surfaces;
- broken cells;
- cracked cells;
- faulty interconnections or joints;
- cells touching one another or the frame;
- failure of adhesive bonds;
- bubbles or delamination forming a continuous path between a cell and the edge of the module;
- tacky surface of plastic materials;
- faulty terminations, exposed live electrical parts;
- any other conditions which may affect performance;

Results

The following figure illustrates the cell position on the module.

Superstrate

Figure 1 "Cell positions"

Sample No.	Condition Visual Inspection
2733660	No major visual defects
2733659	No major visual defects
2733658	No major visual defects

Table 6 Results "Visual Inspection As Received"

U

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
31.1	-	24.9	2019-12-31

Maximum power determination as received

Description and Setup

The maximum power determination *according to IEC612152nd edition rev. date 2005-04* has been determined by use of a class A pulsed sun simulator *according to IEC60904-9* and a photovoltaic reference device *according to IEC 60904-2* of the same technology as the sample under test.

- Before each test the photovoltaic reference device was placed on the pulsed sun simulator to adjust the test equipment and assure the correctness of the measurement.
- After adjusting the pulsed sun simulator the sample under test was placed on the test area and hold at a temperature of 25°C +/-1°C.
- The current-voltage characteristics were measured and recorded at an irradiance of 1000 W/m².

Results

Sample No.	Voc [V]	Vmp [V]	lsc [A]	Imp [A]	Pmax [W]	FF [%]	Т [°С]	Irr [W/m²]
2733660	48.581	39.611	9.697	9.187	363.908	77.24	25	1000
2733659	48.548	39.535	9.715	9.237	365.195	77.43	25	1000
2733658	48.616	39.655	9.672	9.244	366.562	77.96	25	1000

Table 7 "Maximum power determination"

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
30.7	-	24.1	2019-12-31

Dielectric voltage withstand test as received

Description and Setup

The insolation test was performed according to 61730-2:2004

A voltage of 4 times the maximum system voltage plus 2000Vdc was applied between shorted output terminals and the frame for 1 minute.

After this the maximum System Voltage, but at least 500V, was applied between the shorted output terminals and the frame. After 2 minutes the insulation resistance was measured.

Sample	Length [m]	Width [m]	Area (L x W) [m²]	Minimum Resistance Required (40MΩ*m²/Area) [MΩ]
2733660				
2733659	1.960	0.990	1.94	20.62
2733658				

Results

Sample No.	Applied test voltage [V]	Dielectric breakdown [Yes/No]
2733660	8000	No
2733659	8000	Νο
2733658	8000	Νο

Table 8 "Dielectric strength"

Sample No.	Applied test voltage [V]	Measured insulation resistance [MΩ]	Required insulation resistance [ΜΩ]
2733660	1500	> 9900	20.62
2733659	1500	> 9900	20.62
2733658	1500	> 9900	20.62

Table 9 "Insulation resistance"

Supplementary information: The maximum resistance measurement range is 9900 M Ω .

U

Report No:4788939006Report Date:2020-02-15

Outcome

There was no indication of dielectric breakdown for all Samples.

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
30.7	-	24.1	2019-12-31

Wet leakage current test as received

Description and Setup

The wet leakage current test was performed *according to IEC612152nd edition rev. date 2005-04*. The module was placed in a water test solution so that all surfaces except the junction box entries were covered by the water solution. The cable entries were only sprayed with the water test solution.

The maximum system voltage, but at least 500V, was applied between the shorted output terminals and the solution. After 2 minutes the insulation resistance was measured.

The test solution shall meet following requirements:

- Resistivity: less than $3500\Omega^*$ cm
- Temperature: 22°C ± 3°C

Sample	Length [m]	Width [m]	Area (L x W) [m²]	Minimum Resistance Required (40MΩ*m²/Area) [MΩ]
2733660				
2733659	1.960	0.990	1.94	20.62
2733658				

UL

Report No:4788939006Report Date:2020-02-15

Results

Resistivity of water test solution [Ω*cm]	Surface tension of water test solution [N/m]	Temperature of water test solution [°C]			
1946	-	22.8			
Table 10 "Measurement solution"					

Sample No.	Applied test Voltage [V]	Measured insulation resistance [MΩ]	Required insulation resistance [MΩ]
2733660	1500	4672	20.62
2733659	1500	3876	20.62
2733658	1500	4155	20.62

Table 11 "Wet leakage current test as received"

Report No:4788939006Report Date:2020-02-15

Outcome

The measured insulation resistance of all Samples is greater than the minimum required resistance.

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
30.7	-	24.1	2019-12-31

Ground continuity test as received

Description and Setup

The ground continuity test was performed *according to IEC61730-2 1st edition rev. date 2004-10.* A current of 2.5 times of the maximum over current protection rating of the module was applied between the grounding connection and the conductive frame. After 2 minutes the voltage drop across the grounding connection under test was measured. The resistance was then calculated. The test was repeated for each frame part of the Module.

Results

The following Figure illustrates the measurement points for the ground continuity test:

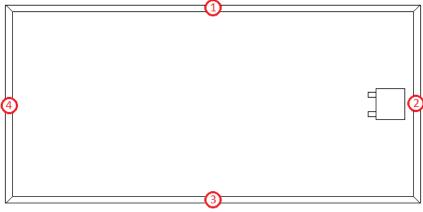


Figure 2 "Measurement points for ground continuity test"

Sample	Measuremen t Points	Protection rating [A]	Applied Current [A]	Voltage Drop [V]	Resistance [Ω]
	1 to 2			0.049	0.0013
2733660	1 to 3			0.066	0.0018
	1 to 4			0.083	0.0022
	1 to 2			0.081	0.0022
2733659	1 to 3	15	37.5	0.055	0.0015
	1 to 4			0.064	0.0017
	1 to 2			0.074	0.0020
2733658	1 to 3			0.087	0.0023
	1 to 4			0.061	0.0016

Table 12 "Ground Continuity Test"

UL

Report No:4788939006Report Date:2020-02-15

Outcome

The grounding path resistance for all samples is below 0.1Ω .

Report No: 4788939006 Report Date: 2020-02-15

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
-	_	-	2019-12-31-2020-1-20

Ammonia resistance test procedure

Description and Setup

The Ammonia resistance test procedure was performed *according to IEC 62716 Edition 1.0 date 2013-06*.

Test condition:

		Hours	Hours 8 h including heating up
1 test		NH ₃ -concentration	6 667 ppm ¹)
	section	Temperature	(60 ± 3) °C
		Relative humidity	Saturation at about 100 % (dewing of the samples)
Cycles	2 toot	Hours	16 h including cooling (Test chamber opened and/or ventilates)
	2 test section	NH ₃ -concentration	0 ppm
	Section	Temperature	18 °C to 28 °C
		Relative humidity	max. 75 %
Duration	Duration Duration 20 cycles (480 h)		80 h)
			of the test chamber and corresponds to a ground quantity of water of of concentration is derived from DIN 50018, Table 1.

During testing the inclination to the vertical of the face of the PV module normally exposed to solar irradiance shall be 15° to 30° inside the test chamber. The two samples shall be installed in the chamber such that they are oriented in opposite directions. One sample's front side facing the chamber outer wall, one sample's rear side facing the chamber outer wall.

After the ammonia test all samples shall be washed to remove the adherent ammonia using running tap water (not artificially pressurized) for a maximum time of 5 min per square meter of area of the sample. Once the washing is finished distilled or demineralized water shall be used to rinse the samples, followed by complete drying at room temperature. To accelerate drying it is allowed to shake the test sample by hand or to use air blasts with the aid of a fan. The temperature of the water used for washing shall not exceed 35 °C.

UL

Report No:4788939006Report Date:2020-02-15

Results

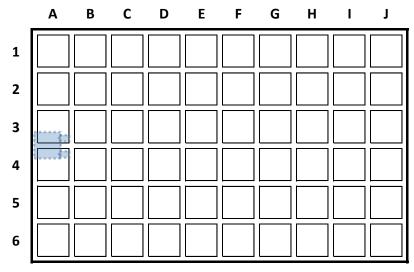
Sample	No.		2733660, 2733659
		Hours(h)	8 (including heating up)
	1 test	NH ₃ -concentration(ppm)	6667
Cycles	Temperature(°C)	61	
	Relative humidity(%)	100	
	Hours(h)	16 (including cooling)	
	2 test	NH ₃ -concentration(ppm)	0
	section	Temperature(°C)	25
		Relative humidity(%)	36
Duration 20 cycles (480h)			

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
29.6	-	23.5	2020-01-21

Visual Inspection after Ammonia resistance test procedure

Description and Setup

Samples were visually inspected *according to IEC61215 2nd edition rev. date 2005-04*. To detect visual defects prior testing. The test was performed with an illumination of not less than


1000 lux. The modules were inspected for the following conditions (if applicable) primarily, additionally all other observations on the modules were noted.

- cracked, bent, misaligned or torn external surfaces;
- broken cells;
- cracked cells;
- faulty interconnections or joints;
- cells touching one another or the frame;
- failure of adhesive bonds;
- bubbles or delamination forming a continuous path between a cell and the edge of the module;
- tacky surface of plastic materials;
- faulty terminations, exposed live electrical parts;
- any other conditions which may affect performance;

Results

The following figure illustrates the cell position on the module.

Superstrate

Figure 3 "Cell positions"

Sample No.	Condition Visual Inspection
2733660	No major visual defects
2733659	No major visual defects
2733658	No major visual defects

Table 13 "Visual Inspection after Ground continuity test"

U

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
24.6	-	25	2020-01-21

Maximum Power Determination after Ammonia resistance test procedure

Description and Setup

The maximum power determination *according to IEC612152nd edition rev. date 2005-04* has been determined by use of a class A pulsed sun simulator *according to IEC60904-9* and a photovoltaic reference device *according to IEC 60904-2* of the same technology as the sample under test.

- Before each test the photovoltaic reference device was placed on the pulsed sun simulator to adjust the test equipment and assure the correctness of the measurement.
- After adjusting the pulsed sun simulator the sample under test was placed on the test area and hold at a temperature of 25°C +/-1°C.
- The current-voltage characteristics were measured and recorded at an irradiance of 1000 W/m².

Results

Sample No.	Voc [V]	Vmp [V]	lsc [A]	lmp [A]	Pmax [W]	FF [%]	T [°C]	Irr [W/m²]
2733660	48.615	39.617	9.698	9.191	364.130	77.23	25	1000
2733659	48.670	39.650	9.609	9.144	362.549	77.52	25	1000
2733658	48.595	39.584	9.722	9.253	366.251	77.52	25	1000

Table 14 "Maximum power determination after Ammonia resistance test procedure "

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
27.8	-	23.2	2020-01-21

Dielectric voltage withstand test after Ammonia resistance test procedure

Description and Setup

The insolation test was performed according to 61730-2:2004

A voltage of 4 times the maximum system voltage plus 2000Vdc was applied between shorted output terminals and the frame for 1 minute.

After this the maximum System Voltage, but at least 500V, was applied between the shorted output terminals and the frame. After 2 minutes the insulation resistance was measured.

Sample	Length [m]	Width [m]	Area (L x W) [m²]	Minimum Resistance Required (40MΩ*m²/Area) [MΩ]
2733660				
2733659	1.960	0.990	1.94	20.62
2733658				

Results

Sample No.	Applied test voltage [V]	Dielectric breakdown [Yes/No]
2733660	8000	No
2733659	8000	No
2733658	8000	No

Table 15 " Dielectric voltage withstand test"

Sample No.	Applied test voltage [V]	Measured insulation resistance [MΩ]	Required insulation resistance [ΜΩ]
2733660	1500	>9900	20.62
2733659	1500	>9900	20.62
2733659	1500	>9900	20.62

Table 16 "Insulation resistance "

Supplementary information: The maximum resistance measurement range is 9900 MΩ.

UL

Report No:4788939006Report Date:2020-02-15

Outcome

There was no indication of dielectric breakdown for all Samples.

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
27.8	-	23.1	2020-01-21

Wet leakage current test after Ammonia resistance test procedure

Description and Setup

The wet leakage current test was performed *according to IEC61215 2nd edition rev. date 2005-04*. The module was placed in a water test solution so that all surfaces except the junction box entries were covered by the water solution. The cable entries were only sprayed with the water test solution.

The maximum system voltage, but at least 500V, was applied between the shorted output terminals and the solution. After 2 minutes the insulation resistance was measured.

The test solution shall meet following requirements:

- Resistivity: less than $3500\Omega^*$ cm
- Temperature: $22^{\circ}C \pm 3^{\circ}C$

Sample	Length [m]	Width [m]	Area (L x W) [m²]	Minimum Resistance Required (40MΩ*m²/Area) [MΩ]
2733660				
2733659	1.960	0.990	1.94	20.62
2733658				

Results

Resistivity of water test solution [Ω*cm]	Surface tension of water test solution [N/m]	Temperature of water test solution [°C]		
2087	-	23.0		
Table 17 "Measurement solution"				

Table 17 "Measurement solution

Sample No.	Applied test voltage	Measured insulation resistance	Required insulation resistance
	[V]	[ΜΩ]	[ΜΩ]
2733660	1500	3896	20.62
2733659	1500	4016	20.62
2733658	1500	4328	20.62

Table 18 "Wet leakage current test after Ground continuity test"

Outcome

The measured insulation resistance of all samples is greater than the minimum required resistance.

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
27.8	-	23.2	2020-01-21

Ground continuity test after Ammonia resistance test procedure

Description and Setup

The Ground continuity test after Ground continuity test was performed *according to IEC61730 edition 1.1 rev. date 2012-11*. A current of 2.5 times of the maximum over current protection rating of the module was applied between the grounding connection and the conductive frame. After 2 minutes the voltage drop across the grounding connection under test was measured. The resistance was then calculated.

The test was repeated for each frame part of the Module.

Report No: 4788939006 Report Date: 2020-02-15

Results

The following Figure illustrates the measurement points for the Ground continuity test after Ground continuity test:

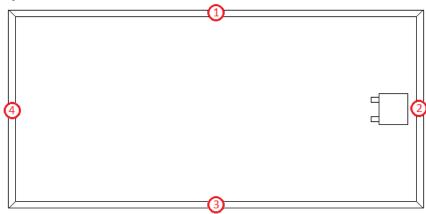


Figure 4 "Measurement points for Ground continuity test after Ground continuity test"

Sample	Measuremen t Points	Protection rating [A]	Applied Current [A]	Voltage Drop [V]	Resistance [Ω]
	1 to 2			0.070	0.0019
2733660	1 to 3			0.053	0.0014
	1 to 4			0.086	0.0023
	1 to 2			0.093	0.0025
2733659	1 to 3	15	37.5	0.039	0.0010
	1 to 4			0.045	0.0012
	1 to 2			0.096	0.0026
2733658	1 to 3			0.088	0.0023
	1 to 4			0.047	0.0013

Table 19 "Ground continuity test after Ground continuity test"

UL

Report No:4788939006Report Date:2020-02-15

Outcome

The grounding path resistance for all samples is below 0.1Ω .

Humidity/	Barometric Pressure /	Ambient /	Date
[%r.H]	[mBar]	[°C]	
29.6	-	23.7	2020-01-22

Bypass diode functionality test

Description and Setup

The diode functionality test after environmental duct and sand test was performed according to *IEC61701Salt mist corrosion testing of PV modules 2nd edition date 2011-12.*

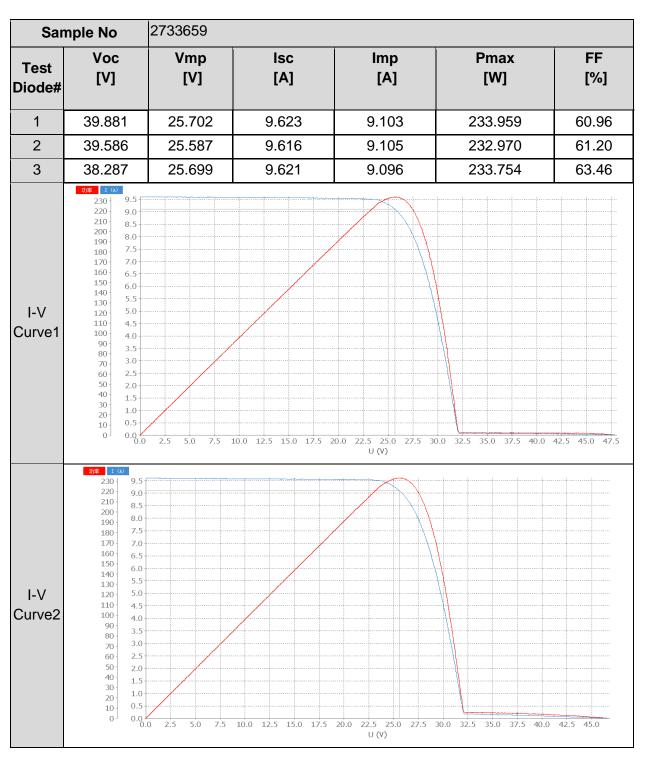
a) Electrically short any blocking diodes incorporated to the test sample.

b) Determine the rated STC short-circuit current of the test sample from its label or instruction sheet.

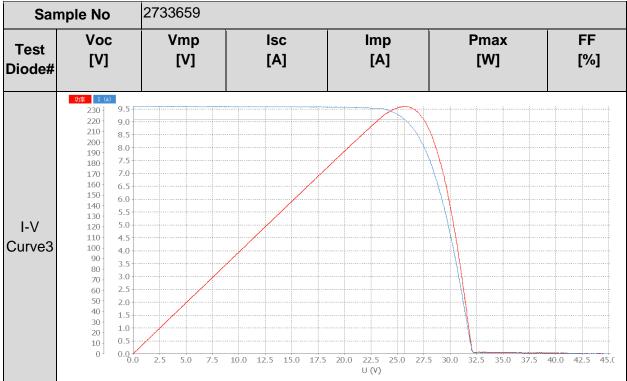
c) Connect the DC power source's positive output to the test sample negative lead, and the DC power source's negative output to the test sample positive lead by using wires of the manufacturer's minimum recommended wire gauge. Follow the manufacturer's recommendations for wire entry into the wiring compartment. With this configuration the current shall pass through the cells in the reverse direction and through the diode(s) in the forward direction.

d) Apply a current equal to of 1,25 times (\pm 5 %) the STC short-circuit current of the test sample for a period of 1 h.

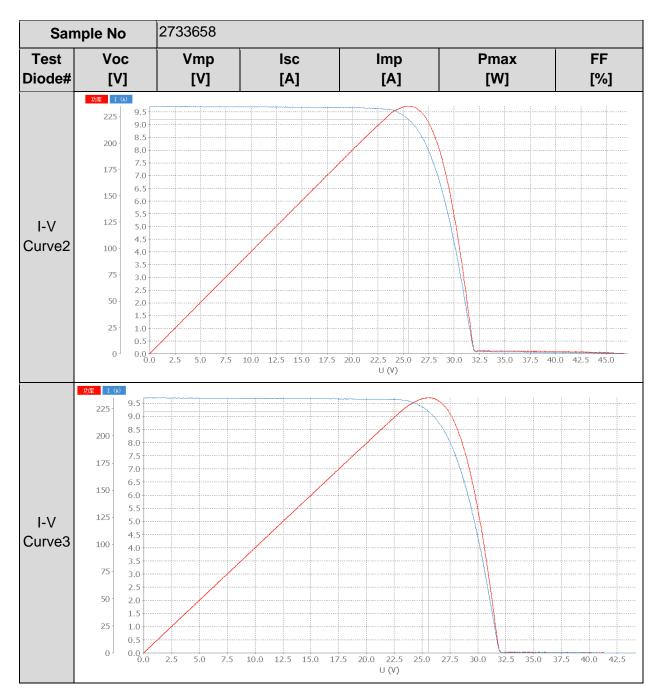
e) to shade a solar cell protected by each diode (one per string, step by step) in the PV module and verify the characteristics of the resulting I-V curve (under illumination close to STC) to check if the bypass diode(s) is(are) working.


Results

Sample No.	2733659			
Module temperature [°C]		25		
Number of diodes in junction box		3		
Diode manufacturer		_		
Diode type designation				
STC short-circuit current [A]	9.88			
Current flow (1.25 * Isc) [A]	12.4			
Test duration (hour)	1			
	Diode 1	Diode 2	Diode 3	
Diode functional? Yes/No	Yes	Yes	Yes	
Sample No.	2733658			


Sample No.	2733658		
Module temperature [°C]	25		
Number of diodes in junction box	3		
Diode manufacturer	—		
Diode type designation	—		
STC short-circuit current [A]	9.88		
Current flow (1.25 * Isc) [A]	12.4		
Test duration (hour)	1		
Diode functional? Yes/No	Diode 1	Diode 2	Diode 3
	Yes	Yes	Yes

Outcome



San	nple No	2733658				
Test Diode#	Voc [V]	Vmp [V]	lsc [A]	lmp [A]	Pmax [W]	FF [%]
1	39.939	25.579	9.731	9.218	235.784	60.67
2	39.326	25.515	9.744	9.208	234.940	61.31
3	37.641	25.560	9.725	9.200	235.137	64.24
I-V Curve1	第二日の 第二日の 第二日の 第二日の 第二日の 第二日の 第二日の 第二日の	0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5		20.0 22.5 25.0 27.5 U (V)	30.0 32.5 35.0 37.5 40.0	42.5 45.0 47.5

Page 40 of 47

The diode did still function as a diode after the conclusion of the test.

U

Appendix 1 – Statement of the estimated uncertainty of the PIV test results

Statement of the estimated uncertainty of the I/V test, K=2. U(Isc)=2.4% U(Voc)=0.6% U(Pmax)=2.6%

Appendix 2 – PV module Family Bill of Material

BILL OF MATERIAL DETAIL OF NAVITAS GREEN SOLUTIONS PVT LTD

SR No.	Object	Manufacturer	Specifications
1	Solar Glass	Gujarat Borosil Ltd	AR Coated Tempered Glass Thickness 3.2mm
2	Ribbon(Cell Connector)	Luvata	SN/PB - 60/ 40
3	Busbar(string Connector)	Luvata	SN/PB - 60/ 40
4	EVA(Encapsulati on Material)	Renewsys India Pvt Ltd	Conserv PUVT-14FC Conserv P360-14 FC
5	Backsheet(Rear Cover)	Renewsys India Pvt Itd	Preserv A-190 WN
6	Silicon Sealant	Tonson Adhesive, Inc.	1527
7	Aluminum Frame	Lead Solar Holding Ltd	T5 35 HS
8	Solar Cell	Viet-energy	Mono Perc
9	Junction Box	Jiangsu Haitian Microelectronics	PV-HT013, 1500V, 15A, IP68
10	Adhession	Tonsan Adhessive	1527

	D. * NAL
Prepared By Roshan Tandel	Approved By Sanjeeu Gupta
	STOLATOS NET

Appendix 3 – Instrument reference list

All instruments calibrations are traceable to national normal.

Instrument reference list					
Instrument ID	Instrument type	Model	Calibration date		
			Last	Due	
10045783000100359	Solar simulator	Flash Generator HighLight3 LMT	2019.01.31	2020.01.30	
2016LB1016	Ammonia corrosion chamber	F-(NH3)SO2-09	2019.11.25	2020.11.24	
736400	Stopwatch	Diamond	2019.08.20	2020.08.19	
/	Shunt	FL-27(50A/75mV)	2019.10.14	2020.10.13	
/	Steel tape	2000mm	2019.11.22	2020.11.21	
JC01563	Conductivity meter	3173	2019.02.20	2020.02.19	
1711213	Dielectrometer	SE7430	2019.04.19	2020.04.18	
90810022	Light Meter	TES 1332A	2019.04.09	2020.04.08	
16440050	Multimeter	289C	2019.01.29	2020.01.28	
93621	Gas Flowmeter	YDOOO3955	2019.07.15	2020.07.14	
02130835	Pyranometer	TBQ-2	2019.07.11	2020.07.10	
OMS-1110-01	Outdoor tester	BR-PV-OMS	2019.04.16	2020.04.15	

Table 20 "Instrument reference list"

U

Appendix 4 – Label and module picture

Electrical	sustain fl Ratings	
At STC, 1000W/sqaure m , AN 25° C)All values are nominal ur		
Module Type	NSM380	
Serial Number	NS38007190	00014
Pmax	380.0	W
Voltage (Vmax)	39.8	V
Current (Imax)	9.55	A
Open circuit voltage (Voc)		V
Short circuit current (Isc)	9.88	A
System voltage	1500	VDC
ByPass Diode Ratings	30	A
Series Fuse Ratings	15	A
Safety Class		
Application Class	•	
	RICAL HAZ	ARD
 This module produces elect Follow all applicable ele ONLY qualified person should not insemptules BE AVARE of dangerous hi are connected inseres. DO NOT handle or install 	strical satety p all or perform mainte gh DC voltage, w	hen modules
DO NOT damage or scratch t Warrar ty Voids if rear surface i Junction Box Terminations are	he rear surface of sucratched, damag	the modules.

Module Label

Junction box and connector

UL

Report No: Report Date:

4788939006 2020-02-15

Module front view

Module rear view

Report No:4788939006Report Date:2020-02-15

END OF TEST REPORT